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NOMENCLATURE

(=H'/W') Aspect ratio

Maximum amplitude of vibration

Body force

Specific heat

Enclosure depth (see sketch below)

(=a'w®) Maximum enclosure acceleration
Acceleration of gravity

Enclosure height (see sketch below)
Thermal conductivity

Pressure

(=u'c'/k') Prandtl number-dimensionless
(=(Tﬁ—Té)BW'3g/a'v') Rayleigh number-dimensionless
Temperature

(=[T-T;]1/[T}-T;]) Dimensionless temperature
Time |
(=v't'/W'2) Dimensionless time
x'-component of velocity

y'-component of velocity

Enclosure motion

(=V'/a'nw') Dimensionless enclosure motion
Enclosure width (see sketch below)

Cartesian coordinate (see Fig. 1)
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X (=x'/W') Dimensionless coordinate

y' Cartesian coordinate (see Fig. 1)

y (=y'/w') Dimensionless coordinate

a' Thermal diffusivity

B' Volumetric coefficient of thermal expansion
u' dynamic viscosity

v' (=u'/p"') Kinematic viscosity

p' Density

V! Stream function

¥ (=¢'/a') dimensionless stream function
w' Frequency

Subscripts

c Vertical boundary at x' = W'

h Vertical Boundary at x' =0

P Constant pressure

v Constant volume

y y direction

v~

H'

D‘




INTRODUCTION

This is the first Quarterly progress Report for NAS8-20284,
VIBRATION EFFECTS ON HEAT TRANSFER IN CRYOGENIC SYSTEMS. The
period covered is June 1, 1966 to August 31, 1966.

Nb1‘ |(lejs report presents the results of an intensive search of the
literature for published research on natural convection within en-
closures, the effects of vibration on natural convection, and the
effects of vibration on fluid transport properties (thermal conduc-
tivity and viscosity). The governing equations for the initial
geometrical configuration for the natural convection study are formu-
lated in dimensionless form and disucssed, and the final initial
design of the companion experimental system is presented and

discussed. A brief general discussion of the transport-property study

is given. éLidﬁn/

ANALYSIS OF PROGRESS

The literature survey has been completed, and 225 articles have
been catalogued as being of possible interest to this research. A
number of these articles, which were considered most pertinent to the
specific problem being investigated, were abstracted for quick refer-
ence to their content. The survey of the literature yielded a very
comprehensive working bibliography covering natural convection, the
effects of vibration on natural convection, and transport property

determination.




»
An initial mathematical formulation of the following problem has
been completed:
Consider the laminar two-dimensional natural
convection of a fluid enclosed between two
plane vertical boundaries, which are held at
different temperatures, with the space between
them closed by horizontal boundaries. In the
remaining direction the space is considered to
extend to infinity. The enclosure, formed as
described above, is subjected to either longi-
tudinal or transverse vibration.
A set of dimensionless differential equations and appropriate boundary
conditions were obtained which showed that the dimensionless para-
meters Pr, Ra, H'/W', and g'/gé are sufficient to determine uniquely
distributions of the stream function and temperature. The above

results predict that experimentally determined heat transfer rates

are correlatable by
Nu = F(Pr, Ra, H'/W', g'/gd).

A preliminary design of an apparatus to study experimentally the
natural convection problem described in the previous paragraph has been
completed. Considering force limitations of the vibration testing
system, acceleration and aspect ratio limits have been established.

From all possible configurations.within these limits two height-depth
combinations were chosen which, using three or more side plate widths
each, will allow aspect ratios from 1 to 31 to be achieved. Methods

have been selected for heating, cooling, temperature measurement, velocity

measurement and flow visualization. Test cell final design has been




started using the guidelines above. Also, a dummy cell has been designed
which is to yield information concerning induced lateral accelerations
and mounting plate integrity. This information, which will be available
shortly, will be of use during the final design period.

The molecular theories of liquids which appear in the literature
have been studied for the purpose of selecting one theory from among
those which have been proposed to use as a basis for an analytical attack
on the problem of the effect of vibrations on transport properties of

liquids.

PROGRESS

Literature Search

A literature search was made to obtain the reported research in
the following areas: (a) natural convection within enclosures, (b)
the effects of vibration on natural convection (both for simple shapes
vibrating in an infinite atmosphere and vibrating enclosures completely
or partially filled with a fluid), (c) transport property determination
(both theoretical and experimental), and (d) the effects of vibration
on the thermal conductivity and viscosity. The search included the
following sources of information:

1. Engineering Index

2. Applied Mechanics reviews

3. Dissertation Abstracts

4. Heat Transfer Bibliography (appears periodically in International
Journal of Heat Mass Transfer)



5. Chemical Abstracts

6. Science Abstracts

Appendix I is a listing of the articles located which are presented
under two major categories; (a) natural convection in enclosures and the
effects of vibration on natural convection and (b) transport property
determination and the effects of vibrations on properties. Many of the
articles have been abstracted to show the relevance of a particular article
to the research problem and to serve as a reminder to the research team
of the content of particular papers. Those articles not abstracted were
considered to be of peripheral interest, however, each of these articles
was reviewed by at least one member of the research group. It should
be emphasized that Appendix I is to serve as a working bibliography,
and new articles will be added as they appear or as the research proceeds

and new emphasis occurs.

The Natural Convection Problem and Its Formulation

Consider the laminar two-dimensional natural convection of a fluid
enclosed between two plane parallel vertical boundaries a distance W'
apart which are held at different temperatures. The space between the
vertical boundaries is closed by two horizontal boundaries a distance H'
apart where H'>>W'(see Fig.l). In the remaining direction, at right
angles to the plane of the sketch in Fig. 1, the space is considered to
extend to infinity. The enclosure, formed as described above and depicted

in Fig. 1, is subjected to either longitudinal or transverse vibration.



The problem is now formulated with respect to a moving co-ordinate
system which is fixed to the vibrating enclosure. Under vibratory
conditions, the enclosure and confined fluid are assumed to vibrate
together as a bulk, i. e., no relative motion exists between the en-

closure walls and the confined liquid as a result of the vibration.

T}'] >Té
H'>> W'

0>

H'

}’{—l
W —

Figure 1. Schematic Diagram of Rectangular Enclosure Subjected to
Either Transverse or Longitudinal Oscillations.



This assumption is crucial in that the mathematical formulation of the
problem depends in large measure upon how the vibration effects are
incorporated into the momentum equations. Additional assumptions relating
to the manner in which density variations are considered are also required,
and these assumptions must be weighed quite carefully in the final
analysis. Each of the aforementioned assumptions will be discussed and
justified at the point in the development where it is made.

Let Tﬂ and Té be the temperatures of the left and right vertical
boundaries respectively. (All dimensional quantities are primed and
all dimensionless quantities are unprimed.) Since pressure differences
in the fluid will be small in comparison to the absolute pressure, varia-
tions in density will be determined by variations in the temperature T'.
If the ratio (Tﬂ - Té)/Tﬂ is small, variation in the temperature of the
fluid normally needs to be considered only in the determination of the
buoyancy force. However, since there is an added force in the momentum
equations due to the enclosure motion, which involves the density of the
fluid, and since it is of primary importance to determine the coupling of
these two forces, variations in the density will also be considered in
this added d'Alembert force. In the other force terms of the momentum
equations the density will be considered uniform at its mean value, i.e.,
its value at T = (Tﬂ + Té)/2.

Considering the assumptions described above, the equation of con-
servation of mass is

! 1
g:, + g‘;, =0 (1




where x', y' are the coordinates as shown in Fig. 1 and the corresponding
velocities are u', v'.
Assuming no temperature change in the fluid due to compression and/or

viscous dissipation, the energy equation becomes

DT'
Dt!

= o'verT' . (2)

In equation (2) 527 is the substantial derivative and Vzis the Laplacian
t

operator and are given by

D 9 v O v O
DeT - et T8 T TV dy'
32 32
V2= 3x'2 + aylz , and

t' is time and a'is the thermal diffusivity (k'/B'c; for gases, k'/a'c;
for liquids where p' is the density evaluated at T', k' is the thermal
conductivity of the fluid and cé, cy are the specific heats); a' is
considered uniform at its value at T'.

Considering transverse vibration (x'direction ) the momentum equations

are:

Du' ) -\

DET T T FTaE t VTR ko 3
' ' 2 ' (4)

%%T = - %7- %37 + V'V v+ £




where P' is the pressure in the fluid, v' is the kinematic viscosity

]
(=§T), V' is the enclosure motion, and By is the body force. By is
equal to -p'gy which, considering the previous assumption regarding the

smallness of (Tf, - T¢) /T, may be written
By = ~p'glB'T" + C (5)

where B' is the volumetric coefficient of thermal expansion, gy 1is the
acceleration of gravity, and C is a constant which is of no significance
in that it falls out of the final equations. The enclosure motion is

assumed sinusoidal so that

V' = a'w' cos w't? (6)

where a' and &' are the amplitude and frequency of vibration respectively.
The last term in equation (3) is a 'so-called' d'Alembert force which
arises from the vibration of the enclosure and the assumption that the
enclosure and confined fluid move as a bulk.

The boundary conditions that will be placed on the variables u',

v', and T' at the vertical boundaries are

e
]
<
]
o
3
]

Tp, at x' =0

uw' =v' =0, T' =T, at x = W',

The governing equations may be simplified by writing them in

dimensionless form and introducing the stream function which satisfies

the continuity equation identically. We define the following dimensionless

variables:




oy’ ¥

y = y'/y' where u' = 3;7 and v's - o
T'-T¢ v’ v't!
Ts T VU wer £ wT
x' 1]
X = and y = —%7.
The energy equation (2) can now be written as
BT, 1 AT | 1 o
at Pr 9(x,y) Pr
(7
where 3(T,¥) _ 3T 3¥ T 3¥
3(x,y) ~ 3¥x 3y Jy Ix
L IR |
and Pr is the Prandtl number (= HE%_)' The pressure is now eliminated

from equations (3) and (4), p' is eliminated with the use of equation
(5) and equation (6) is used in writing the d'Alembert force. These

operations give

(VYY) 1 RPN L o oo AT . g' . w'W'2t JT
5t t 5r {}—ET;T§7— = V2 (V2¥)-Raqz— + gc.>.51n " 5y (8)

L I t\p1713 .
where Ra is the Raleigh number = a T V’ and g' = a'w’ is the
o'V

maximum acceleration of the enclosure.

The boundary conditions are now



¥(0,y,t) 3¥(o,y,t) _ 0 ¥Y(1l,y,t) = ¥(,y,t) _ 0

X 9xX
\ 1]
W(X,O',t) = _‘LL—BW();YO t) = 0: "Y(X,H'/W',t) = BW(};;H /W‘E)‘ = O,

¥(x,y,0) = o, T(x,y,0) Q)(initial uniform temperature),

T(o,y,) = 1, T(L,y,t) =0,  2LEo.) - BTGLH/WL,E _ g
oy 3y

For longitudinal vibrations, y' direction, equation (8) needs only to

be modified by changing the sign of the last term in braces on the right-

hand side tominws and the %% to —%%-. The remaining equations are un-

altered.

The form of the governing equations (7) and (8) and the above
boundary conditions show that the following dimensionless parameters
are sufficient to determine uniquely the ¥ and T distributions: Pr, Ra,
H'/W', and g'/gé. The first three parameters would appear for the same
problem without vibration, and thus, this mathematical formulation shows
that there is only one additional parameter required for the vibration
problem, the acceleration ratio g'/gé.

From the previous discussion we see that it should be possible to

express experimental heat transfer results in the following functional form:
Nu = F(Pr, Ra, H'/W', g'/gé) (9

where Nu is an appropriately defined Nusselt number encompassing measured

heat transfer rates.

- 10 -




Experimental System

The initial experimental effort is to be directed toward collecting
data using. water as the test cell fluid. This cell will be vibrated
both transversly and longitudinally, will be heated on one side by an
electrical heater and cooled on the other, and will be constructed to
allow flow visualization and temperature distribution measurements.

The University's 2000 pound force vibration laboratory (Unholtz-
Dickie) has been readied for use on this project. The spaces have been
cleared, air-conditioning installed, and instrumentation is being

readied or has been ordered.

Test Cell Design

In the adopted nomenclature for the enclosure, an investigation has
been made into the ranges of H'/W' and D'/W' which can be used. The
limiting factors in the selection of test cell sizes were the test cell
weight and the provision of sufficient cell depth to guarantee two-dimen-
sionality. In order to reach the 25 g acceleration level with the vib-
ration system to be used, a total table load of 60 pounds must not be
exceeded. This total weight will consist of the heat source and sink
plates, the base plate, the test fluid, and any instrumentation which
must be placed on the cell. Another design objective was to study cells
with aspect ratios (H'/W') from 1 to as high as 40. In order to provide
as many aspect ratio configurations as possible, computer calculations

were made on the size ranges available under the following assumptions.

~-11 -



(1) Total cell weight of 40 pounds

(2) One-inch thick heater, guard heater and cold plates. Assumed
to be solid aluminum.

(3) Vary H' from 2 to 24 inches in increments of 2 inches

(4) For each H' vary W' from 1 to 30 inches in increments of 1 inch.

With these restrictive limits the ranges in available values of D'/W',
H'/W' and maximum W' were calculated. Those having a D'/W' ratio of 5 or
greater were assumed to satisfy two-dimensionality requirements. The
cells with configurations as described are shown in Appendix 1. From these
sizes two cell height-depth combinations were chosen. For each of these
combinations the cell width will be varied to provide different configu-

rations with the characteristics shown below.

Height ~ 16"; Depth - 7"
Using 3 sets of sideplates

W' H'/W' D'/W'
1.7 9.3 4.1

1.0 15.8 7.0
0.5 31.0 14.0

Height - 4"; Depth - 22"
Using 4 sets of sideplates

W' H'/W' D'/W'
4.0 1.0 5.5
2.0 2.0 1i.0
1.0 4.0 22.0
0.5 8.0 44.0

- 12 -




As shown, the construction of two sets of hot and cold plates,
using several sets of sideplates for each, will allow testing of a
range of aspect ratios from 1 to 31. Construction and use of the 7"

x 16" set of hot and cold plates will preceed the construction of the
4" x 22" set. The experience of design and operation of the first cell
will allow improvements in the second.

Hot, cold, and guard heater plates are to be constructed of
aluminum. Hot plates and guard heaters will make use of strip heaters
while the cold plate will be integrated into the evaporator circuit of a
refrigeration system. All plates are to be instrumented with thermocouples
in sufficient number to monitor and control the thermal environment of
the cell.

Consideration, with supporting calculations, was given to electro-
plating the plate surfaces to provide a more uniform thermal field. The
techniques of electroplating aluminum with copper or silver were such
that no improvement in the thermal uniformity of the plates could be

expected.

Temperature Measurements

The temperatures of the fluid enclosure will be measured with
thermocouples imbedded in the plates. After considering several methods
of measuring temperature distributions in the fluid, the following method
was chosen. The factor in this selection carrying the most weight was to
reduce the stirring action of any type of thermal probe during cell

vibration. The optimum solution consisted of suspending butt-welded

- 13 -



thermocouples horizontally across the width of the cell. These thermo-
couples will be mounted so that they may be moved axially thus causing

the junction to traverse the width of the cell. Several thermocouples

of this type will be installed across the cell. A calculation was made

to estimate the maximum center displacement of a thermocouple wire sus-
pended in the above manner. The calculation indicated that a small amount
of tension will be necessary in the wire in order to render this dis-
placement negigible. The tension is to be produced by use of small spring

mounts for each thermocouple.

Flow Visualization

Several methods of flow visualization have been reviewed and studied.
One stands out in its simplicity, ease of application, and ability to
yield quantitative, as well as qualitative, results. This method was
described by Brooks(18la)in his thesis. It makes use of small (average
size-~-100 microns) neutrally bouyant particles, a high intensity light
source, and photographic recording equipment. The spherical shape of the
particles (Eccospheres-by Emerson and Cuming, Inc.) causes them to reflect
and refract light readily. The use of an interrupted’ light source will
show the motion of the particles as traces on a photographic plate. These
traces can be correlated with the frequency of light source interruption
to yield velocity data. Brooks has shown that particle densities as low
as 0.0083 grams/ft3 of water are sufficient for utilization of this method;

thus, no appreciable effect is expected on the motion of the fluid.

- 14 -




A generous supply of these particles has been ordered and the selection

process is underway to obtain a satisfactory light source.

Design Considerations

A dummy cell, to be constructed of aluminum, has been designed to
simulate the mass distribution of a typical test cell. This unit is to
.be instrumented with accelerometers to determine the extent of transverse
vibration induced from point to point on the cell by vertical vibration of
the shaker table.

This dummy unit should provide valuable information quickly on the
integrity of any mounting plate designs. It will also yield estimations
of the several possible modes of resonance of the test cell unit.

Considerable thought has gone into the problem of avoiding the
presence of bubble coalescence. The use of distilled, filtered, and
de~gassed water is anticipated. Details of the cell design are also being
incorporated to eliminate any free surface and bubbles from the cell liquid.

Consideration is also being given to the possible effects of the

magnetic field from the shaker on thermocouples and other instrumentation.

Transport Properties

The analytical study of the effect of vibrations upon the transport

properties of liquids is being undertaken from the molecular (or kinetic

- 15 -



theory) viewpoint. Since a complete and widely accepted kinetic theory
of liquids has not yet .been formulated, several of the semi-empirical,
approximate theories have been considered for application in this study.
The theory of Born and Green (185) is a mathematical formulation
of a general kinetic theory which involves the use of a complete set of
distribution functions rather than the single distribution function
necessary in the kinetic theory of gases. The solution to the resulting
equations is not yet known for most cases. Nevertheless, the theory of
Born and Green is being considered as the basis for the study of the
effect of vibrations on transport properties because of its completeness.
The theories of Eyring, Enskog and Kirkwood (204) have also been
considered for this study.
In addition to selection of a theory of liquids as a basis for
the analytical study, the question of the manner in which vibrational
effects should be introduced into the equations has also been considered.
Although no final decision has been reached on this aspect of the problem,
it appears that the vibrational effects will be introduced as a sinusoidal

force equally distributed among the molecules of the system.
PROGRESS EXPECTED DURING NEXT REPORT PERIOD
The mathematical formulation presented in this report is a first
effort at obtaining the governing equations of natural convection of a

fluid contained between two vertical isothermal boundaries subjected to

either longitudinal or transverse oscillations. The use of a moving

- 16 -



coordinate system, which simplifies the writing of boundary conditiomns,
will be explored further to ensure that all the necessary terms have been
included in the momentum equations. The assumptions used in the develop-
ment of the final equations (7) and (8) will be re-evaluated to ensure
appropriateness and validity. Because. of the complexity of the governing
equations, and the lack of mathematical techniques suitable to obtain
closed-form solutions of the complete equations, attempts will be made to

simplify these equations to a tractable form.

Experimental work planned for accomplishment during the next reporting

period will consist primarily of constructing and instrumenting a test
cell. Once completed, the cell will be operated in the stationary mode

and the resulting data compared with published information for natural
convection in enclosures. This comparison will prove the integrity of the
test cell and instrumentation configuration. With this work completed
during the forthcoming report period the investigation of performance under
vibration can be started in the subsequent period.

The study of the various molecular theories of liquids will be
continued with the goal being the final selection of one of these theories
as the basis for the study of the effects of vibrations upon the trans-
port properties.

The criteria for final selection of a suitable theory will include:
the mathematical tractability of the resulting equations, the feasibility
of including an external force in the equations, and the numerical results

that have been obtainable from previous applications of the theory.
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159-165 (May 1964).

The authors present an analytical solution to the problem of
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that the bouyancy effects predominate, the fluid is incompressible,
the bulk fluid moves as a mass, and that the normal boundary layer
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transfer rate for laminar flow. This conclusion was confirmed by
experiment.

BLANKENSHIP, V. D. and J. A. CLARK, "Effects of Oscillation from a
Vertical, Finite Plate," Trans. Amer. Soc. Engngrs., Series C, J.
of Heat Transfer, 86, no. 2, pp. 149-158 (May, 1964).
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The problem of steady, laminar natural convection between
horizontal concentric cylinders was attacked numerically via finite
difference approximations to the governing equations. The stream
function and temperature distribution were obtained for several diameter
ratios and Grashof numbers. No unstable flow conditions were obtained,
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and relatively large amplitudes and the effects of this wvibration on

the heat flux were experimentally determined. It was concluded that
either forced, free, or mixed convection correlations could be used

to predict the heat transfer coefficient depending on the relative
values of the Reynolds number and the Rayleigh number. The Reynolds
number is based upon the mean velocity of the wire. In the mixed
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This paper presents a theoretical analysis of convection in
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modified Rayleigh number.
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This paper is concerned with the effect of inclination on natural
convection heat transfer in liquids confined by two parallel plates.
Data is taken and mathematical relations are developed from which heat
transfer coefficients can be determined. The fluids used were water,
silicon oils, and mercury. One point of interest is that the authors
considered the effect of aspect ratio negligible.
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This paper states that the advantage of the implicit method
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Presents experimental technique, data, and correlations for
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used to determine temperature profiles. Aspect ratios reported are
2.5, 10, 20 and 46.67. Relations for local and average heat transfer
are given,
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C, pp. 379-381. -

A technical brief which describes the use of tellurium probes to
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Concerns heat transfer data for a heated horizontal wire
immersed in a water bath and oscillating in a vertical plane. This
paper describes a technique of measuring air velocities in free con-
vection flows using dust (zinc sterate) particles for tracers and
photographic plates. The method agreed closely with the analytical
solution except at points outside the maximum velocity area. Random
alr currents and very precise control of illumination make the method
a tedious one.

ELDER, J. W., "Laminar Free convection in a Vertical Slot," J. Fluid
Mech. 23, Pat. I, pp. 77-98 (1965).

This is an experimental study of the interaction of the shear
and buoyancy forces in natural convection in a liquid. The experi-
mental apparatus was a rectangular slot with two isothermal opposing
sides at different temperatures. The experiments were run using
medicinal paraffin and a silicone oil and were restricted to aspect
ratios from 1 to 60 and Rayleigh numbers from 10 to 108.

The major emphasis in this report is placed on the uniform
vertical temperature gradient found in the interior of the flow for
Rayleigh numbers greater than 10 and the mechanics of the secondary
flows.
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Mech. 23, Part I, pp. 99-111 (1965).

An experimental study of unsteady and turbulent free convective
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difference. The aspect ratio was in the range 10-30, while the wvalue
of the Rayleigh number was greater than 106 . Using flow visualization
techniques, the flow pattern in the slot was shown to consist of two
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regions near the walls, there existed a uniform mean temperature field.
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Vertical surfaces were maintained at different constant temper-
atures. Various fluids giving a Prandtl number of from 3 to 30,000
were tested. Analytical approach considered boundary layer approxi-
mations coupled with integral techniques-solution very limited even
though experiment and theory were reasonable close. An empircal equa-
tion is given that correlates the experimental results and contains
the height to thickness ratio of the layer. This equation does not
correspond to those given by other researchers.
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pp. 133-48 (May 1961).

Reports resulted of flow visualization studies of flow field
about horizontal heated cylinder for several sound pressure levels,
frequencies and 1/d ratios. Concludes that vortex motion begins to
form in flow field at a "critical sound pressure level,”" and becomes
fully developed at a higher SPL. Later paper by same authors contains
essentially this information with improved discussion.
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A 'critical' intensity of vibration (amplitude x frequency) was
determined below which the influence of the vibration upon the heat
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upon the heat flux must be taken into account and that the direction
of the vibration vector relative to the direction of the gravity force
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This paper reports the results of an experimental investigation
of the influence of intense acoustic vibrations on the rate of heat
transfer from a circular cylinder to air in crossflow. An excellent
review of the literature concerning the effects of vibrations, induced
by sound fields and mechanically, on natural convection from a simple
shape to an infinite atmosphere is given.
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Heat transfer rates were determined for water in a vertical
tube closed at the bottom, with a length-radius ratio of 21. This
uniform wall heat flux case was found to agree on the average with the
constant wall temperature case. The local Nusselt number was found
to increase rapidly at a critical Rayleigh number. Below this criti-
cal value, the results agree with the values for a vertical flat palte
with uniform heat input.
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In this paper the natural convection of water and benzine ina
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is studied. It is stated that for constant temperature difference
between the halves of the annulus, and circular motion of the liquid, that
Nu=.125 Ra for Ra=16,000. This study confirms this equation experi-
mentally. It 1is also stated that for cellular liquid motion the Nusselt
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An experimental study of natural convection between concentric
cylinders. The gap between the cylinders was filled with water, trans-
ofmer o0il, or machine o0il. Three diameter ratios were utilized; the
ratio varying from 1.234 to 3. Gap thicknesses were 7, 20, and 40 mm.
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analysis is used to establish the parameters and various 'numbers'’
involved in convection heat transfer. Sclution of several emperical
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A detailed study of the flow by means of a hot wire and several flow
visualization techniques is discussed.
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APPENDIX II

TEST CELL CONFIGURATION POSSIBILITIES



jas)

Rl S T O R S R S Y

TN

o 00 00 0o

16
16

18

20

22

24

22
23
24
25
26
27
28
29
30

16
17
18
19
20
21
22

13
14
15
16

11
12
13

Test Cell Configuration possibilities

=P NN W WS

OCORHEHENDW

ORMF ORI

= N

APPENDIX II

(dimensions in inches)

W

414
.867
.365
.904
478
.083
717
.376
.058

.365
. 687
.083
. 544
.058
.618
.219

.478
717
.058
.481
.897
.058
.348
.083
.058
.219

.717
.618

.717
481

.618

.058

.219

.058

- 47 -

H/W

WRNEHRFFERO

= N
o~ W SO NP

o« WO W

29.

18

100.

22.

.906
.034
.189
.377
.614
.920
.233
.907
.782

.783
.222
.880
.887
.673
.707
456

.229
.659
.564
. 640

.272
.455
.766

.760
<345
.912

.154
.649

.318
.280

120

.909

672

691

=
O 00~ BB

21
28

37

D/W

.984
.948
.131
. 609
.493
12.
16.

960
307

.076
.364

.754
.328
.640
12.
18.
33.
100.

810
909
973
672

.247
.154
14,
33.

182
280

.799
11.
.396

345

.320
.455
.336

.659
.560

.077
.640

.324

.673

.456

.727




